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Abstract

Hydrophobicity is one of the most important physicochemical properties of proteins. Moreover, it plays a fundamental role in hydrophobic
interaction chromatography, a separation technique that, at present time, is used in most industrial processes for protein purification as well as
in laboratory scale applications. Although there are many ways of assessing the hydrophobicity value of a protein, recently, it has been shown
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hat the average surface hydrophobicity (ASH) is an important tool in the area of protein separation and purification particularly
hromatography. The ASH is calculated based on the hydrophobic characteristics of each class of amino acid present on the pro
he hydrophobic characteristics of the amino acids are determined by a scale of aminoacidic hydrophobicity. In this work, the
owan–Whittaker and Berggren were studied. However, to calculate the ASH, it is necessary to have the three-dimensional prote
requently this data does not exist, and the only information available is the amino acid sequence. In these cases it would be
stimate the ASH based only on properties extracted from the protein sequence. It was found that it is possible to predict the
protein to an acceptable level for many practical applications (correlation coefficient > 0.8) using only the aminoacidic compos

redictive tools were built: one based on a simple linear model and the other on a neural network. Both tools were constructed st
he analysis of a set of 1982 non-redundant proteins. The linear model was able to predict the ASH for an independent subset with a
oefficient of 0.769 for the case of Cowan–Whittaker and 0.803 for the case of Berggren. On the other hand, the neural model im
esults shown by the linear model obtaining correlation coefficients of 0.831 and 0.836, respectively. The neural model was some
obust than the linear model particularly as it gave similar correlation coefficients for both hydrophobicity scales tested, moreover, th
ariabilities did not overcome 6.1% of the mean square error. Finally, we tested our models in a set of nine proteins with known
ime in hydrophobic interaction chromatography. We found that both models can predict this retention time with correlation coeffic
lightly inferior (11.5% and 5.5% for the linear and the neural network models, respectively) than models that use the information
hree-dimensional structure of proteins.
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. Introduction

Hydrophobicity is one of the most important physico-
hemical properties of proteins. This property is so essential
hat it is considered as one of the fundamental components
hat govern protein folding[1]. Moreover, the hydrophobic
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characteristics of a protein perform a fundamental role d
ing its behavior in solution and how the protein relate
other biomolecules. In fact, this property plays a fundam
tal role in hydrophobic interaction chromatography (HIC
separation technique that, at present time, it is being us
most industrial processes for protein purification as we
in laboratory scale applications.

The hydrophobicity value of a protein can be assigne
many different methodologies which can be experiment
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theoretical. However, a great number of the main properties
of a protein are determined by the features of its surface.
For example, protein functions such as catalysis or molec-
ular recognition occur predominantly on or near the protein
surface. Also, it has been observed that the superficial amino
acid composition is well correlated with the cellular localiza-
tion of the protein[2]. Thus, it is natural that the estimation
of the hydrophobicity will be related with the analysis of the
protein surface. A method for establishing the hydrophobicity
of a protein consists on considering the relative contribution
of each one of the amino acids presents on the surface, defin-
ing by this way an average surface hydrophobicity (ASH)
[3]. In this case, the contribution of each amino acid will be
determined by its abundance and by its hydrophobic charac-
teristics. The choice in how the aminoacidic hydrophobicity
is quantified determines, in definitive, the protein hydropho-
bicity and the practical application of this value. For exam-
ple, Berggren and collaborators showed that it is possible
to predict the protein behavior in aqueous two-phase system
knowing the value of ASH. The value of ASH was calculated
based on a scale of aminoacidic hydrophobicity specially de-
veloped for that purpose[3]. On the other hand, Lienqueo
and collaborators found that the ASH is correlated satisfac-
torily with the retention times in HIC[4]. In this case, one of
the aminoacidic hydrophobicity scales that best modeled the
behavior was proposed by Cowan and Whittaker[5].

e the
t does
n acid
s ositio
o n of
t gy of
c gh
t s are
q sible
t fea-
t inted
o based
o n re-
p tural
c d
o

s to
s d on
i ible
m ose.

2

2

was
o e
d er of
s o re-

duce data redundancy and to guarantee a minimum resolution
in the considered structures, the working database was built
using one of the subsets published by Hobohm et al.[10].
The available selection corresponds to that published in De-
cember 2003 and had a sequence identity cutoff of 25%. This
selection can be found in the websitehttp://homepages.fh-
giessen.de/∼hg12640/pdbselect/recent.pdbselect25. Also,
the database was filtered eliminating membrane proteins,
which were 60. The search was carried out searching directly
on the PDB files with the following text patterns: “mem-
brane”, “transmembrane”, “trans-membrane”, “fiber” and
“fibrous” and analyzing the results manually. The proteins
that truly corresponded to membrane proteins were elimi-
nated from the database. Finally, after all these operations,
the working database was conformed by 1982 proteins.

2.2. Determination of the protein average surface
hydrophobicity

The protein average surface hydrophobicity was computed
assuming that each amino acid in the protein surface con-
tributes, proportionally to its abundance, with the properties
associated to the protein surface[3]. According to the previ-
ous hypothesis, the ASH can be calculated by the following
equation:
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However, to calculate the ASH, it is necessary to hav
hree-dimensional protein structure. Frequently this data
ot exist, and the only information available is the amino
equence. In these cases, to estimate the surface comp
f the protein it is necessary to start with the constructio

hree-dimensional models, usually using the methodolo
omparative modeling[6] or maybe in some cases throu
he developing of ab initio models. These methodologie
uite complex. The question that then arises is: is it pos

o carry out an estimation of the ASH based on simpler
ures like the aminoacidic composition? It has been po
ut that some features of the proteins can be predicted
n their amino acid composition. For example, it has bee
orted that the prediction of the protein’s secondary struc
ontent[7], and the protein structural class[8] can be carrie
ut successfully from its amino acid composition only.

Keeping this in mind, the main objective of this paper i
how if it is possible to predict the ASH of a protein base

ts amino acid composition and also in investigating poss
athematical models that could be suitable for this purp

. Materials and methods

.1. Data selection

The protein three-dimensional data used in this study
btained from the PDB database[9]. This study used th
atabase available until March 2004, when, the numb
tructures stored in PDB was nearly 25,000. In order t
n

Φsurface〉 =
i ∈ A

r̂iφi (1)

here〈Φsurface〉 is the average superficial hydrophobicity
given protein,A is the collection of the 20 possible ami
cids andφi is the hydrophobicity of the amino acid of ty

. The hydrophobicity of each amino acid was assigned
ording to the scale of Cowan–Whittaker[5] or according to
he scale of Berggren[3] depending on the desired appli
ion. These hydrophobicity scales are detailed inTable 1. The
raction of superficial area ˆri occupied by the amino acidi is
efined by:

ˆi = Si∑
j ∈ A

Sj

(2)

here,Si is the sum of the accessible superficial area (A
or all the amino acids of typei. The value of ASA wa
alculated using the software STRIDE[11].

.3. Linear model

The feasibility of modeling the ASH by means of
ata provided by the amino acid composition of the pro
equence was studied. The model I, is the simplest m
onsidered in this work, and it is defined by the follow
quation:

SHI = c0 +
20∑
i=1

ciâ
I
i + c21̂l (3)

http://homepages.fh-giessen.de/~hg12640/pdbselect/recent.pdb_select25
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Table 1
Hydrophobicity scales used in this work

aa Hydrophobicity scalesa

Cowan–Whittaker Berggren

Ala 0.660 0.169
Arg 0.176 0.000
Asn 0.306 0.257
Asp 0.433 0.099
Cys 0.763 0.169
Gln 0.323 0.257
Glu 0.467 0.099
Gly 0.557 0.109
His 0.000 0.035
Ile 1.000 0.264
Leu 0.998 0.264
Lys 0.061 0.000
Met 0.846 0.169
Phe 0.983 0.796
Pro 0.768 0.169
Ser 0.401 0.169
Thr 0.494 0.169
Trp 0.914 1.000
Tyr 0.682 0.870
Tyr 0.682 0.870

a The scales are scaled in the interval [0; 1].

where, ASHI is the ASH value for a protein given for model I,
ci corresponds to the parameters of the linear model obtained
by the least squares procedure,l̂ is the ratio between the
length of the protein sequence and the maximum length ob-
served in the working database. The value ˆaI

i corresponds to
the fraction of the maximum accessible surface of the amino
acids of typei when they are totally exposed, defined by:

âI
i = niSmax,i∑

j ∈ A

njSmax,j

(4)

where,ni is the number of amino acids of classi in the
protein andSmax,i is the maximum possible value of ASA,
obtained when arranging the amino acid of classi in a
extended conformation tripeptide G–X–G[12]. The values
of Smax in Å2 are 113 (ala), 241 (arg), 158 (asn), 151 (asp),
140 (cys), 189 (gln), 183 (glu), 85 (gly), 194 (his), 182 (ile),
180 (leu), 211 (lys), 204 (met), 218 (phe), 143 (pro), 122 (to
Be), 146 (thr), 259 (trp), 229 (tyr), 160 (val).

The previous model considers that each amino acid is in its
maximum exposition state. An extension to this model was
to incorporate a correction factor that takes into account the
general tendency of each amino acid to be exposed or not to
the solvent. The quantification of this trend can be performed
in multiple ways. However, the options analyzed in this study
w ssi-
b the
e
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(

The RASA of an amino acidk in a protein is defined as the
ratio between their ASA value (sk) and their maximum ASA
(Smax). Then, the model II is obtained when incorporating the
following Eq.(5) into the model described by Eq.(3):

âII
i = niSmax,iαi∑

j ∈ A

njSmax,jαj

(5)

where,αi is the exposition factor for the amino acid of classi.
Finally, the model III establishes a linear relationship

among the ASASi for all the amino acid of classi and the
maximum possible ASA defined forniSmax,i . In this case, ˆaIII

i

would be given by:

âIII
i = niSmax,iβi + ηi∑

j ∈ A

(njSmax,jβj + ηj)
(6)

whereβi andηi are the coefficients of the linear model be-
tweenSi andniSmax,i calculated for all the amino acids of
classi present in the complete database using the least squares
procedure.

By definition, the sum of coefficients ˆai is one, so these co-
efficients conform a linear dependent system. Therefore, the
models analyzed in this work do not consider the data of the
least hydrophobic amino acid, provided by histidine for the
m argi-
n scale.
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ere built starting from the analysis of the relative acce
le superficial area (RASA). Then, the alternatives for
xposition factor considered in this study were:

(a) Average and median of the RASA of all the amino a
of classi in the database.

b) Probability that one amino acid of classi has a RASA
superior to a certain thresholdµ.
odels associated to the scale of Cowan–Whittaker, and
ine, in the case the models associated to the Berggren

.4. Using linear models to predict ASH

The possibility of using the linear models described
iously as predictors of the ASH for proteins with unkno
hree-dimensional structure was evaluated. For that pur
he working database was divided in two subsets: train
est subsets in a ratio 2:1 (1321/661). The train subse
sed to adjust the parameters of the models using the
quare method. The test subset was used to evaluate th
ormance of the models like prediction tools. The const
ion of the train and test subsets was repeated 100 tim

random way. For each repetition, the effectiveness o
odels was evaluated; the average on all the repetition

nally reported.

.5. Design of a neural network predictor

A predictor tool based on a neural network model
lso considered as these models have shown to be
nd effective tools to solve this type of problem in a co
rehensive spectrum of applications[13–16]. The design o

he neural network was carried out considering as input
ain variables of the models I–III. Those are, the varia

ˆ I
i, âII

i , âIII
i (inputs type I–III) and̂l, these variables defined

roup of 20 inputs. The components associated to histi
n the case of Cowan–Whittaker and arginine for Bergg
ere not considered. Two preprocessing techniques
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tested for the inputs and outputs of the network: scaling
min/max, which makes a scaling of the entries so that they
fall in the interval [−1; 1]; and normalization avg/std, which
transforms the entries so that they will have zero mean and
unity standard deviation.

The architecture of the network considered an input layer
with 20 components, an output layer with one neuron and a
hidden layer with a variable number of neurons. The size of
the hidden layer was selected between 1 and 15 depending
on the performance of the network. The activation function
used in the network depended on the preprocessing of the
input data. When the data were preprocessed using the scaling
min/max or the normalization avg/std, the activation function
was chosen to be the hyperbolic tangent function since it
maps its entry to the interval [−1; 1]. On the other hand,
when no preprocessing was done, the activation function was

a sigmoid function which maps its entry to the interval [−1;
0].

The training algorithm selected was a commercial im-
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each one of these repetitions the network was initialized with
20 sets of random different parameters to avoid reaching a
local minimum in the error surface.

2.6. Performance measurement for the models

The performance of the models developed in this work
was compared by mean of four fundamental parameters: The
mean square error MSE, the mean absolute error MAE, the
standard deviation of the MAE, the maximum value of MAE
and the Pearson’s correlation coefficient. The mean absolute
error and the Pearson’s correlation coefficient utilized in this
work were calculated by means of the following expressions:

MAE = 100

N

N∑
k=1

|xk − yk|
xk

(7)

Pearson=
N

N∑
k=1

(xkyk) −
N∑

k=1
xk

N∑
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yk√√√√N
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(xk)2 −
(
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)2
√√√√N

N∑
k=1
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(
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wherexk represents the ASH of the proteink; yk, the pre-
diction of the ASH for the proteink; andN, the number of
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lementation of the Levenberg–Marquardt algorithm. T
lgorithm is more memory intensive than the traditiona
orithms, however, it presents very efficient and fast lear

eatures. The chosen parameters for the training algo
n all the experiments were:µLM = 1.0, µDEC = 0.8 and

INC = 1.5. The training style selected was Batch-train
n this modality all the data are presented to the netw
efore making any change in the network parameter
eneral, this training style allows obtention of softer
ost continuous learning profiles.
As the main interest in this model is to use its predic

apabilities, it was necessary to train the network so it g
ntees good generalization. To accomplish this objecti
idely used methodology, called early-stopping or stop

raining, was used. Basically, this method requires the
ion of the data set into three subsets: train, validation
est. During the training, the update of the network par
ters is made based only on the data provided by the
ubset, while simultaneously, the performance of the net
s monitored in the validation subset. The process of trai
tops when the error in the validation subset increases c
ally for a specified number or epochs. Finally, the predic
apabilities of the network are measured, in the test su
n this study, the database was divided according to the
:1:1 (991/496/495) for the train, validation and test sub
espectively.

In this case, it was of interest to know the robustness o
odel to changes in the subsets of train, validation and

o test this, each network was trained with 20 groups of t
alidation and test subsets built randomly. Additionally,
roteins in consideration. The maximum MAE correspo
o the biggest percentage discrepancy observed in the
onsideration.

. Results and discussion

.1. Analysis of the database

The average surface hydrophobicity defined in Eq.(1)was
alculated for all the proteins in the database using the
rophobicity scales of Cowan–Whittaker and Berggre
iscussed by Berggren and Lienqueo[3,4]. Fig. 1 shows a
istogram of the ASH, as well as a scatter plot between
alculated by means of both scales. Both plots show th
eneral, the value of the ASH for a protein calculated

ng the scale of Cowan–Whittaker is larger than the s
alculated using Berggren. The average value observ
he ASH of Cowan–Whittaker is almost 2.5 times the
erved in the case of Berggren. Also, the range for the AS
owan–Whittaker is 1.7 times the range of Berggren, th

ore, it is possible to state that the ASH calculated acc
ng to the scale of Berggren is less sensitive to chang
he composition of the protein surface, this being confir
y the special features present in the scale of Berggren
ydrophobic amino acids are well separated from the
rophilic ones). It was determined that the correlation co
ient among the ASH calculated using both scales is sli
reater than 0.6, indicating that both measures are no

ly interchangeable. Therefore, it is necessary to study
cales separately.
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Fig. 1. Histogram of average surface hydrophobicity (ASH) in the whole
database. () ASH calculated using the scale of Cowan–Whittaker
(<ASH> = 0.479± 0.051, ASHmin = 0.280, ASHmax= 0.779). (�) ASH
calculated using the scale of Berggren (<ASH> = 0.189± 0.036,
ASHmin = 0.080, ASHmax= 0.382). Inset: scatter plot between the ASH
calculated by means of the scales of Cowan–Whittaker and Berggren
(slope = 0.863, intercept = 0.315, Pearson = 0.623).

The aminoacidic composition of the database was inves-
tigated as shown inFig. 2and it was observed that the values
obtained followed a reasonable distribution. Near 30% of the
database was conformed by leucine (8.8%), alanine (7.8%),
glycine (7.1%) and valine (6.9%) which correspond to some
of the amino acids found with higher frequency in the pro-
teins and are usually considered more as amino acids with a
structural function than as components with some special role
in the protein. On the other hand, the scarcest amino acids
were histidine (2.4%), methionine (2.1%), cysteine (1.9%)
and tryptophan (1.5%), which correspond to amino acids
commonly found in active sites or binding sites of proteins,
and therefore, are less frequent.

se.

3.2. Linear models

The linear models I–III were built using all the data in the
database by means of the least squares methodology. Before
using model II, it was necessary to calculate the exposition
factors associated to each class of amino acid. In total, 12
factors were calculated, obtained from the analysis of the
whole database. These coefficients are listed inTable 2. In
a few words, the values in this table correspond quite well
with what one would expect based on the hydrophobic char-
acteristic associated to each amino acid. This way, the most
hydrophilic amino acids present high exposition factorsαi
indicating their predisposition to be exposed to the solvent.
On the contrary, the hydrophobic amino acids possess the
lowest exposition factors.

Model III required the determination of the parameters
of the linear functions that associate the exposed area to the
solventSi and the maximum possible areaniSmax,i . The pa-
rameters of these functions together with the correlation co-
efficient associated to each one of these are listed inTable 3.
In the same way as in the model II, the hydrophobic nature
of each amino acid determined the general trend observed in
Table 3. The correlation coefficients of the hydrophilic or am-
phipathic amino acids, for instance: lys (0.967), glu (0.963),
asp (0.947), gln (0.931), asn (0.928) and arg (0.917), are very
high. On the other hand, the smallest correlation coefficients
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Fig. 2. Relative frequency of the amino acids in the working databa
ere found for the hydrophobic amino acids: phe (0.671
0.682). Consequently, the confidence intervals associa
he slope of hydrophilic amino acids models were sm
han the hydrophobic ones.

Table 4summarizes the results obtained by the three m
ls in this study. In the discussion that follows, the refere

or discussion is taken as the results obtained by mod
t was determined that in the case of both hydrophob
cales, the best results reached by the model II were obt
hen selecting an exposition factor equal to the probab

hat one amino acid of classi has a RASA greater than 60
µ = 0.6 in Table 2). However, although this model inco
orates a higher quantity of information, represented b
xposition factor to the solvent, it was only able to decr
he MSE in 4% as average in both scales. The increase
orrelation coefficients was even less appreciable, only
esponding to an increment of 1% on average. With re
o model III, in the case of the Cowan–Whittaker scale,
as able to decrease the MSE in a little more than 18%

o increase the correlation coefficient in 6%. These re
re almost five times better that those obtained by mod

n the case of Berggren, the performance of model III
lmost the same as the one observed in model I. The r
btained by model III are justified by the greater amoun

nformation regarding the way in which the amino acids
istributed in the protein surface as a function of their a
ance. Although the results obtained by model III repres
easonable enhancement with regard to model I, this pro
s not necessarily justified with the amount of the additio
nformation available for the model.
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Table 2
Exposition factorsαi for each class of amino acid obtained from the distribution of relative accessible superficial area (RASA) in the whole database: average
RASA, median RASA and the relative frequency to find a RASA larger than a thresholdµ

aa <RASA> Median RASA Relative frequency of RASA >µ

µ = 0 µ = 0.1 µ = 0.2 µ = 0.3 µ = 0.4 µ = 0.5 µ = 0.6 µ = 0.7 µ = 0.8 µ = 0.9

Ala 0.260 0.166 0.842 0.576 0.466 0.378 0.296 0.214 0.143 0.087 0.044 0.023
Arg 0.445 0.435 0.995 0.916 0.818 0.697 0.554 0.410 0.277 0.163 0.086 0.037
Asn 0.441 0.440 0.976 0.849 0.757 0.659 0.549 0.425 0.299 0.199 0.119 0.065
Asp 0.479 0.480 0.983 0.883 0.801 0.710 0.603 0.472 0.347 0.240 0.152 0.086
Cys 0.149 0.073 0.836 0.446 0.282 0.176 0.108 0.063 0.036 0.021 0.012 0.005
Gln 0.448 0.458 0.986 0.889 0.801 0.700 0.580 0.441 0.292 0.169 0.088 0.036
Glu 0.510 0.522 0.991 0.925 0.860 0.777 0.668 0.534 0.385 0.248 0.137 0.065
Gly 0.343 0.293 0.885 0.700 0.593 0.493 0.395 0.305 0.223 0.155 0.090 0.046
His 0.342 0.305 0.968 0.776 0.640 0.506 0.382 0.281 0.184 0.110 0.056 0.022
Ile 0.161 0.064 0.847 0.431 0.297 0.210 0.148 0.093 0.051 0.027 0.014 0.006
Leu 0.186 0.091 0.871 0.484 0.344 0.248 0.174 0.117 0.071 0.040 0.020 0.008
Lys 0.505 0.510 0.997 0.961 0.902 0.805 0.675 0.515 0.349 0.205 0.099 0.035
Met 0.241 0.146 0.881 0.563 0.437 0.330 0.244 0.176 0.120 0.079 0.050 0.031
Phe 0.176 0.086 0.891 0.473 0.323 0.220 0.155 0.102 0.063 0.036 0.018 0.006
Pro 0.402 0.398 0.965 0.814 0.713 0.607 0.497 0.383 0.267 0.163 0.080 0.030
Ser 0.380 0.356 0.941 0.763 0.658 0.559 0.451 0.343 0.243 0.165 0.099 0.054
Thr 0.337 0.313 0.942 0.747 0.629 0.516 0.398 0.278 0.170 0.102 0.056 0.027
Trp 0.202 0.134 0.950 0.573 0.383 0.253 0.166 0.110 0.067 0.033 0.017 0.006
Tyr 0.246 0.185 0.956 0.656 0.473 0.329 0.226 0.153 0.095 0.054 0.027 0.011
Val 0.171 0.073 0.833 0.452 0.325 0.231 0.160 0.099 0.056 0.030 0.015 0.006

With regards to model coefficients it was observed that,
in general, the coefficients associated to the amino acids are
positive, while the coefficients associated to the chain length
are negative. In the case of Cowan–Whittaker the models in-
cluded the contribution of almost the total of the available
variables, except in the case of model I, which deleted the
variable associated to lysine. This is reasonable, since lysine
has the second greatest hydrophobicity drop in value in the

Table 3
Parameters, their confidence intervals (95%) and Pearson’s correlation coef-
ficients of the linear functions (Si = βiniSmax,i + ηi) used to model the re-
lationship between the observed ASA (Si ) and the maximum possible ASA
(niSmax,i ) for each amino acid

aa Pearson ηI βI

Ala 0.855 90.7± 10.1 0.198± 0.005
Arg 0.917 163.2± 17.6 0.363± 0.007
Asn 0.928 89.3± 9.9 0.364± 0.007
Asp 0.947 113.4± 11.2 0.403± 0.006
Cys 0.725 7.0± 3.4 0.132± 0.006
Gln 0.931 73.4± 10.6 0.388± 0.007
Glu 0.963 100.8± 14.1 0.461± 0.006
Gly 0.890 101.2± 7.1 0.243± 0.006
His 0.840 43.1± 8.4 0.284± 0.008
Ile 0.682 94.9± 10.5 0.103± 0.005
Leu 0.723 181.1± 15.9 0.116± 0.005
Lys 0.967 96.1± 14.5 0.461± 0.006
M
P
P
S
T
T
T
V

scale of Cowan–Whittaker. In the case of Berggren, the mod-
els deleted a major quantity of variables, coinciding with the
features characteristic of the scale, where hydrophobic amino
acids are relatively far from the hydrophilic amino acids.

3.3. About the predictive performance of the linear
models

In this section, the predictive capability of the linear mod-
els analyzed in the previous section is studied. Due to this,
the performance of the model in the prediction of the ASH
in a standalone test subset that was not used to adjust the
parameters of each model was studied. The results obtained
in this section don’t differ substantially from those obtained
previously when the complete set of data was modeled as
could be reasonably expected.

Tables 5 and 6detail the results for the calculated ASH
based on the scales of Cowan–Whittaker and Berggren, re-
spectively. The content of these tables allows us to affirm
that remarkable changes did not take place in the com-
parative performance of the models I–III: in the case of
Cowan–Whittaker, the tendency maintained model III as the
best one, presenting a reduction of the MSE observed in
the test group of 18% with regard to model I; in the same
way, for the scale of Berggren, changes were not observed
w pan-
c e not
f

infe-
r ause
t dels.
T ween
et 0.686 59.9± 7.2 0.155± 0.007
he 0.671 93.0± 10.0 0.110± 0.005
ro 0.906 80.5± 9.4 0.326± 0.007
er 0.895 90.9± 10.6 0.308± 0.007
hr 0.892 93.2± 10.2 0.265± 0.006
rp 0.749 30.8± 5.8 0.152± 0.006
yr 0.799 98.7± 10.3 0.171± 0.006
al 0.743 110.8± 9.9 0.109± 0.004
ith regard to the previous section, where big discre
ies among the performance of each of the models wer
ound.

In general, the results obtained in the test group had
ior quality than those observed in the train subset, bec
he test group was not used in the construction of the mo
he discrepancies among the value of obtained MSE bet
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Table 4
Performance indicators for the least square adjustment of the average surface hydrophobicity (ASH) and linear models I–III for the whole database: mean
square error (MSE), mean absolute error (MAE), standard deviation of MAE (MAE std) and correlation coefficient (Pearson)

Performance index Cowan–Whittaker Berggren

Model I Model II Model III Model I Model II Model III

MSE× 103 (–) 1.028 0.981 0.835 0.464 0.449 0.466
MAE (%) 5.3 5.2 4.8 9.1 8.9 9.1
MAE std (%) 4.1 4.0 3.9 7.0 7.0 7.5
MAE max (%) 28.7 27.8 38.6 48.7 46.3 70.8
Pearson (–) 0.776 0.788 0.823 0.810 0.816 0.809

both subsets were less than 5% for the two scales in study,
in the case of model I discrepancies of around 3% were ob-
served for both scales. For Cowan–Whittaker and Berggren
the minimum value of maximum MAE was obtained in model
II, reaching 22.4% in the case of Cowan–Whittaker and al-
most twice as much for Berggren (42.3%).

All the models demonstrated an appreciable robustness,
only small standard deviations among all the repetitions were
observed. In general, the maximum variability in the results
was observed in the scale of Berggren, except per the mea-
sures of maximum MAE and the correlation coefficient. The
standard deviation in the MSE of the test group was less
than 7% in the case of Cowan–Whittaker and 8% in the
case of Berggren. The biggest variability was found in the
value of maximum MAE that was less than 24% in both
cases. The variability of this measure associated with the
scale of Berggren was inferior to that observed in the case of
Cowan–Whittaker. All this indicates that the models associ-

ated with the scale of Cowan–Whittaker can be considered
slightly more robust.

With regards to the parameters of the models: a great vari-
ability is not observed in the parameters found. In fact, great
discrepancy is not observed between these parameters and the
obtained in the previous section. This confirms the robustness
of the models found.

Additionally, we tested this models on the set of nine pro-
teins used by Lienqueo et al.[4]. The same equation pro-
posed by Lienqueo et al. was used in order to correlate the
predictions of the Cowan–Whittaker’s ASH, carried out by
models I–III, with the retention times in hydrophobic inter-
action chromatography of these proteins. The correlation co-
efficients were: 0.850± 0.01, 0.844± 0.01 and 0.954± 0.01
for models I, II and III, respectively. Lienqueo et al. gave a
correlation coefficient of 0.96. It is important to observe that
the standard deviations on the repetitions are small, being
consistent with the previous observations.

Table 5
Average performance indicators and their standard deviation considering all repetitions for the linear models used as predictors of ASH in the case of
Cowan–Whittaker scale: mean square error (MSE), mean absolute error (MAE), standard deviation of MAE (MAE std) and correlation coefficient (Pearson)

Performance index Cowan–Whittaker

Model I Model II Model III

rain

M .974± 0
M 5.2± 0
M 4.0± 0
M 6.2± 2
P .789± 0

T
A ing all o
s rd devi

P

Mode

Train

M 0.446
M 8.9
M 6.9
M 45.2
C 0.817
Train Test T

SE× 103 (–) 1.025± 0.022 1.055± 0.069 0
AE (%) 5.3 ± 0.1 5.4± 0.2
AE std (%) 4.1± 0.0 4.1± 0.1
AE max (%) 26.6± 2.8 23.6± 4.2 2
earson (–) 0.777± 0.007 0.769± 0.021 0

able 6
verage performance indicators and their standard deviation consider
cale: mean square error (MSE), mean absolute error (MAE), standa

erformance index Berggren

Model I

Train Test

SE× 103 (–) 0.462± 0.011 0.477± 0.035
AE (%) 9.0 ± 0.1 9.2± 0.3
AE std (%) 7.0± 0.1 7.1± 0.3
AE max (%) 47.2± 2.1 43.2± 5.0
orrelation coefficient (–) 0.811± 0.005 0.803± 0.015
Test Train Test

.019 1.020± 0.061 0.828± 0.017 0.869± 0.053

.1 5.3± 0.2 4.8± 0.0 4.9± 0.1

.1 4.0± 0.2 3.9± 0.1 4.0± 0.2

.7 22.4± 3.9 37.0± 3.1 30.9± 7.0

.006 0.779± 0.019 0.824± 0.004 0.816± 0.014

repetitions for the linear models used as predictors of ASH in the casef Berggren
ation of MAE (MAE std) and correlation coefficient (Pearson)

l II Model III

Test Train Test

± 0.009 0.464± 0.027 0.465± 0.011 0.474± 0.035
± 0.1 9.0± 0.3 9.1± 0.1 9.2± 0.3
± 0.1 7.0± 0.3 7.5± 0.1 7.6± 0.5
± 1.5 42.3± 4.4 69.9± 3.9 58.2± 13.7
± 0.005 0.810± 0.015 0.809± 0.005 0.804± 0.014
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Table 7
Optimum size of the hidden layer of the neural predictor of ASH found con-
sidering network inputs of types I–III and different preprocessing techniques

Preprocessing Cowan–Whittaker
(input type)

Berggren
(input type)

I II III I II III

None 3 3 4 3 2 3
Min/max 2 2 3 2 3 3
Avg/std 2 2 2 2 2 2

3.4. About the predictive performance of the neural
network models

In this section the results of using a neural network as a
predictor model of the ASH are shown. To determine the most
appropriate architecture of the network as well as the effect
of preprocessing the input data, all the permutation of inputs
(I–III), preprocessing techniques (min/max, avg/std, none),
and number of neurons in the hidden layer was evaluated. For
each pair composed by the input type and their preprocess-
ing, 15 neural networks were evaluated, varying the number
of neurons in the hidden layer. Each valuation was repeated
20 times with train, validation and test subsets generated ran-
domly. In turn, each one of these repetitions was trained 20
times with sets of different initial weights. Therefore, a total
of 54.000 different configurations were evaluated for each
hydrophobicity scale.

The valuation of these configurations allowed the deter-
mination of the optimum network architecture for each pair:
input type/preprocessing type. The determination of the op-
timum number of neurons in the hidden layer was accom-
plished comparing the MSE average on the test subset ob-
tained in all the repetitions. A summary of these results is
shown inTable 7. In this table, it is observed that, in all
cases, the optimum size of the network hidden layer was
found between two and four neurons, that corresponds to a
s n to
t de-
t han
t f in-
p d by
t aker
a net-
w and
o eters
t e
s is 89
( ear
m e ar-
c ore
t odel.

ot af-
f well
k work
i lica-
t ro-

Fig. 3. Mean square error (MSE) of the prediction using the neural predictor
of ASH on the test subsets for the network inputs type I–III. On the left side,
the scale of Cowan–Whittaker; on the right side, the scale of Berggren. The
color of the bar represents: (�) none input preprocessing, () min/max input
preprocessing, ( ) avg/std input preprocessing. The error bars represent the
standard deviation of the MSE for all repetitions.

cessing in the inputs allowed the obtention of the best results
in all cases analyzed. The data are already in the interval [0;
1] and although they do not necessarily cover completely this
range, this did not have a substantial effect in the results. In
the measurements presented inFig. 3, the min/max scaling
technique showed slightly inferior results to those obtained
without preprocessing. On the other hand, the avg/std pre-
processing gave the worst results, deviating more than 40%
in the case of the scale of Cowan–Whittaker and more than
16% in the case of Berggren. The variability of these results
was consistent with the previous observations of the biggest
values in the case of the normalization avg/std (more than
10%). Finally, it was observed that the addition of extra in-
formation to the aminoacidic composition, as in the case of
the neural model based on the inputs type II and III, did not
improve notably the results. In the cases of Cowan–Whittaker
and Berggren, the discrepancy between the models based on
the inputs of type II and III with those of type I was less than
2%, therefore, the discussion will consider only the neural
model with input of type I.

The previous analysis allows us to conclude that the op-
timum network architecture for the prediction of the ASH
starting from the aminoacidic composition, is composed of
only three neurons in the hidden layer, and that the prepro-
cessing of the input data by means of the techniques ana-
lyzed is unnecessary. With this information the training of
t tline
w 100
a s of
r are
s ce
mall number of neurons in the hidden layer in relatio
he size of the input layer. The number of parameters to
ermine in the training of each network is much larger t
he linear model. In each configuration, the number o
uts is constant and equal to 20 since the data provide

he histidine was removed in the case of Cowan–Whitt
nd arginine, in the case of Berggren. Therefore, for a
ork with 20 inputs, two neurons in the hidden layer
ne neuron in the output layer, the number of param

o determine is 45 (20× 2 + 2 + 2× 1 + 1), while when th
ize of the hidden layer is increased to four neurons, it
20× 4 + 4 + 4× 1 + 1). The number of parameters in a lin
odel with 20 variables and one constant is 21. Then, th

hitecture of an optimum network has, at least, a little m
han double the parameters than the equivalent linear m

It was found that the preprocessing technique does n
ect the performance of the neural model. In general, it is
nown that preprocessing the input data for a neural net
s determinant in its performance. However, in this app
ion, in particular,Fig. 3 shows that the absence of prep
he neural model was repeated but considering an ou
here had been increased the number of repetitions to
nd the number of initials conditions to 40. The result
etraining the neural model with the conditions specified
hown inTable 8. As with the linear models, the performan
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Table 8
Average performance indicators and their standard deviation considering all repetitions for the neural network predictor of ASH: mean square error(MSE),
mean absolute error (MAE), standard deviation of MAE (MAE std) and correlation coefficient (Pearson)

Performance index Cowan–Whittaker Berggren

Train Validation Test Train Validation Test

MSE× 103 (–) 0.730± 0.031 0.825± 0.054 0.800± 0.044 0.359± 0.017 0.410± 0.028 0.405± 0.025
MAE (%) 4.5 ± 0.1 4.7± 0.2 4.7± 0.1 8.1± 0.2 8.6± 0.3 8.5± 0.2
MAE std (%) 3.5± 0.1 3.8± 0.2 3.7± 0.2 6.3± 0.2 6.7± 0.4 6.7± 0.3
MAE max (%) 23.2± 2.8 25.1± 6.4 25.7± 5.4 43.4± 4.1 43.2± 6.0 43.5± 6.0
Correlation coefficient (–) 0.846± 0.010 0.829± 0.014 0.831± 0.014 0.857± 0.009 0.833± 0.015 0.836± 0.014

of the neural model in the test subset was inferior to that ob-
served in the train subset. In the test subset and in the case
of Cowan–Whittaker, the neural model was able to decrease
the MSE obtained by the linear model I in 24.2%, in turn,
increasing the correlation coefficient by 8.1%. For Berggren,
the decrease of the MSE was inferior only corresponding to
15.1% associated to an increment of 4.1% in the correlation
coefficient. The neural model was also robust to changes in
the train, validation and test subsets. The variability in the re-
sults experienced a small decrease with regards to the linear
model, inferior to 15% in most of the cases.

The results presented so far show that the predictions of
the calculated ASH based on the scale of Cowan–Whittaker
present a smaller MAE than the same ones based on the
scale of Berggren. In fact,Table 8establishes that the MAE
average for the case of Berggren is almost twice that of
Cowan–Whittaker.Fig. 4 shows a plot with the accumula-
tive frequency of the MAE in a test group chosen randomly.
By means of this plot we can confirm that the frequency of
obtaining a prediction with high error is different for both
scales, being more frequent in the case of Berggren than in
the case of Cowan–Whittaker. For Cowan–Whittaker, the fre-
quency of having a MAE greater than 10% is less than 8%,
whereas in the case of Berggren, it is 22%. Although these

F eural
p e bar
r nd
(

Fig. 5. Mean absolute error (MAE) of the neural predictor of ASH on a
test subset in function of the normalized length of the protein. The test
subset was chosen randomly and the ASH was calculated using the scale of
Cowan–Whittaker. Inset: distribution of the length in the whole database.

values are dependent on the selected test subset, the general
behavior should not change too much due to the small vari-
abilities observed in all the actual repetitions of experiments.

The relationship between the predicted error and the length
of the protein studied is shown inFigs. 5 and 6. A clear re-

Fig. 6. Mean absolute error (MAE) of the neural predictor of ASH on a test
subset in function of the normalized length of the protein. The test subset was
chosen randomly and the ASH was calculated using the scale of Berggren.
Inset: distribution of the length in the whole database.
ig. 4. Cumulative frequency of the mean absolute error (MAE) of the n
redictor of ASH on a test subset chosen randomly. The color of th
epresents: ASH calculated using () the scale of Cowan–Whittaker a
�) the scale of Berggren.



142 J.C. Salgado et al. / J. Chromatogr. A 1075 (2005) 133–143

Fig. 7. Scatter plot between the ASH calculated using the scale of
Cowan–Whittaker and the prediction of the neural network in a test sub-
set chosen randomly.

lationship is not observed between the MAE of the predic-
tion and the normalized protein length, unless the variance
of this indicator diminishes as the protein length increases.
This is explained by the distribution of the protein length in
the database: 90% of the proteins in the database presented
a length inferior to 30% of the maximum observed length
(1014 amino acids) and therefore, the database is composed
in its majority of proteins of medium size.

A direct relation between the error in the prediction and
the value of ASH of the protein was not observed. The scatter

F ggren
a mly.

plots in Figs. 7 and 8show that the error extends regularly
in the whole range of ASH, except toward both ends of the
range. Those values have a higher associated error than those
observed in the center of the range. The simplest explanation
is that the available data to build the models concentrates in
the center of the ranges (seeFig. 1), and therefore, the models
present a better performance under those conditions. This can
be useful to understand why most of the proteins analyzed in
this study present medium hydrophobicity values.

Finally, we used this neural network model (with input of
type I) to predict the Cowan–Whittaker’s ASH on the set of
nine proteins used by Lienqueo et al.[4]. These predictions
were used to estimate the retention time in hydrophobic in-
teraction chromatography of these proteins, in the same way
that in the case of the linear models, giving, in this case, a
correlation coefficient of 0.907± 0.02. Lienqueo et al. gave
a correlation coefficient of 0.96.

4. Conclusions

The question this paper addresses is: Is it possible to pre-
dict the average superficial hydrophobicity of a protein using
only their amino acid composition? The results analyzed in
this study showed that indeed it is possible, although, the
quality of the prediction can be subject to some considera-
t

y on
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t case
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ig. 8. Scatter plot between the ASH calculated using the scale of Ber
nd the prediction of the neural network in a test subset chosen rando
ions.
The simpler model was the linear model I based onl

he aminoacidic protein composition. This model has 21
ameters and was able to predict the ASH for a standa
est subset with a correlation coefficient of 0.769 for the
f Cowan–Whittaker and 0.803 for the case of Berggre
ll the cases where it was evaluated, it gave a low varia

n its performance.
A model based on a neural network was also evalu

his model used the same inputs as the linear model I. I
bserved that for this problem, the optimum configuration
neural model with a single hidden layer considered t

eurons in the hidden layer and with no preprocessin
he inputs. This model has 67 parameters and improve
esults shown by the linear model in a little more than 2
or the case of Cowan–Whittaker and 15% for Berggren.
orrelation coefficients obtained by this model were 0
nd 0.836, respectively. The neural model was shown
lightly more robust that the linear one. In both cases
bserved variabilities were not greater than 6.2% of the m
quare error.

Additionally, it was determined that the addition of d
bout the aminoacidic exposition tendencies to the so
as not translated in a substantial enhancement in th
ults obtained by means of both predictors. Clear inter
ion was not observed between the quality of the predic
nd the protein length or the range of ASH of the pro
eing studied. Distortions were only observed dependin

he characteristics of the database distribution. Finally
hough the neural model gave better results than the l
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model in all cases reviewed, these improvements did not jus-
tify, necessarily, the considerable increase in the parameters
and complexity of the model.

Finally, we tested our models in the set of nine proteins
used by Lienqueo et al.[4] where they reported a correla-
tion coefficient of 0.96 when they used the ASH based on
the scale of Cowan–Whittaker to predict the retention time in
hydrophobic interaction chromatography of these proteins.
The linear model I, proposed in this work, obtained a cor-
relation coefficient only 11.5% inferior. On the other hand,
the neural network model obtained a correlation coefficient
only slightly inferior (5.5%). Both models showed very low
standard deviations. These preliminary results show that both
models have great potential for practical applications.

Acknowledgements

This work was supported by the Fondef project 011031,
the Fondap project CMM II, the postgraduate scholarship of
CONICYT and the Millennium Institute for Advance Studies
in Cell Biology and Biotechnology (ICM-P99-031). We wish
to thank Dr. Maria Elena Lienqueo for facilitating the reten-
tion times of the proteins used in this study and Dr. Barbara
Andrews for critically reviewing the manuscript.

References

[1] W. Kauzmann, Adv. Protein Chem. 14 (1959) 1.
[2] M. Andrade, S. O’Donoghue, B. Rost, J. Mol. Biol. 276 (1998) 517.
[3] K. Berggren, A. Wolf, J.A. Asenjo, B.A. Andrews, F. Tjerneld,

Biochim. Biophys. Acta 1596 (2002) 253.
[4] M.E. Lienqueo, A. Mahn, J.A. Asenjo, J. Chromatogr. A 978 (2002)

71.
[5] R. Cowan, R.G. Whittaker, Peptide Res. 3 (1990) 75.
[6] M.E. Lienqueo, A. Mahn, A. Olivera, J. Chromatogr. A (submitted

for publication).
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