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Abstract

Hydrophobicity is one of the most important physicochemical properties of proteins. Moreover, it plays a fundamental role in hydrophobic
interaction chromatography, a separation technique that, at present time, is used in most industrial processes for protein purification as well as
in laboratory scale applications. Although there are many ways of assessing the hydrophobicity value of a protein, recently, it has been shown
that the average surface hydrophobicity (ASH) is an important tool in the area of protein separation and purification particularly in protein
chromatography. The ASH is calculated based on the hydrophobic characteristics of each class of amino acid present on the protein surface.
The hydrophobic characteristics of the amino acids are determined by a scale of aminoacidic hydrophobicity. In this work, the scales of
Cowan-Whittaker and Berggren were studied. However, to calculate the ASH, it is necessary to have the three-dimensional protein structure.
Frequently this data does not exist, and the only information available is the amino acid sequence. In these cases it would be desirable to
estimate the ASH based only on properties extracted from the protein sequence. It was found that it is possible to predict the ASH from
a protein to an acceptable level for many practical applications (correlation coefficient>0.8) using only the aminoacidic composition. Two
predictive tools were built: one based on a simple linear model and the other on a neural network. Both tools were constructed starting from
the analysis of a set of 1982 non-redundant proteins. The linear model was able to predict the ASH for an independent subset with a correlation
coefficient of 0.769 for the case of Cowan—Whittaker and 0.803 for the case of Berggren. On the other hand, the neural model improved the
results shown by the linear model obtaining correlation coefficients of 0.831 and 0.836, respectively. The neural model was somewhat more
robust than the linear model particularly as it gave similar correlation coefficients for both hydrophobicity scales tested, moreover, the observed
variabilities did not overcome 6.1% of the mean square error. Finally, we tested our models in a set of nine proteins with known retention
time in hydrophobic interaction chromatography. We found that both models can predict this retention time with correlation coefficients only
slightly inferior (11.5% and 5.5% for the linear and the neural network models, respectively) than models that use the information about the
three-dimensional structure of proteins.
© 2005 Elsevier B.V. All rights reserved.
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1. Introduction characteristics of a protein perform a fundamental role defin-
ing its behavior in solution and how the protein relates to
Hydrophobicity is one of the most important physico- other biomolecules. In fact, this property plays a fundamen-
chemical properties of proteins. This property is so essentialtal role in hydrophobic interaction chromatography (HIC), a
that it is considered as one of the fundamental componentsseparation technique that, at present time, it is being used in
that govern protein foldingll]. Moreover, the hydrophobic  most industrial processes for protein purification as well as
in laboratory scale applications.

* Corresponding author. Tel.: +56 2 6784716; fax: +56 2 6991084. The hydrophobicity value of a protein can be assigned by
E-mail addressjsalgado@ing.uchile.cl (J.C. Salgado). many different methodologies which can be experimental or
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theoretical. However, a great number of the main properties duce data redundancy and to guarantee a minimum resolution
of a protein are determined by the features of its surface. in the considered structures, the working database was built
For example, protein functions such as catalysis or molec- using one of the subsets published by Hobohm ef14].
ular recognition occur predominantly on or near the protein The available selection corresponds to that published in De-
surface. Also, it has been observed that the superficial aminocember 2003 and had a sequence identity cutoff of 25%. This
acid composition is well correlated with the cellular localiza- selection can be found in the websltgp://homepages.fh-
tion of the protein2]. Thus, it is natural that the estimation giessen.defhgl12640/pdbselect/recent.pdblect25 Also,
of the hydrophobicity will be related with the analysis of the the database was filtered eliminating membrane proteins,
protein surface. A method for establishing the hydrophobicity which were 60. The search was carried out searching directly
of a protein consists on considering the relative contribution on the PDB files with the following text patterns: “mem-
of each one of the amino acids presents on the surface, definbrane”, “transmembrane”, “trans-membrane”, “fiber” and
ing by this way an average surface hydrophobicity (ASH) “fibrous” and analyzing the results manually. The proteins
[3]. In this case, the contribution of each amino acid will be that truly corresponded to membrane proteins were elimi-
determined by its abundance and by its hydrophobic charac-nated from the database. Finally, after all these operations,
teristics. The choice in how the aminoacidic hydrophobicity the working database was conformed by 1982 proteins.
is quantified determines, in definitive, the protein hydropho-
bicity and the practical application of this value. For exam- 2.2. Determination of the protein average surface
ple, Berggren and collaborators showed that it is possible hydrophobicity
to predict the protein behavior in aqueous two-phase system
knowing the value of ASH. The value of ASH was calculated The protein average surface hydrophobicity was computed
based on a scale of aminoacidic hydrophobicity specially de- assuming that each amino acid in the protein surface con-
veloped for that purposg3]. On the other hand, Lienqueo tributes, proportionally to its abundance, with the properties
and collaborators found that the ASH is correlated satisfac- associated to the protein surfd&. According to the previ-
torily with the retention times in HI{4]. In this case, one of  ous hypothesis, the ASH can be calculated by the following
the aminoacidic hydrophobicity scales that best modeled theequation:
behavior was proposed by Cowan and Whittdkér

However, to calculate the ASH, it is necessary to have the (Psurface = Z Figi 1)
three-dimensional protein structure. Frequently this data does i€A
not exist, and the only information available is the amino acid where(®griace is the average superficial hydrophobicity for
sequence. In these cases, to estimate the surface compositioq given proteinA is the collection of the 20 possible amino
of the protein it is necessary to start with the construction of acids andp; is the hydrophobicity of the amino acid of type
three-dimensional models, usually using the methodology of j. The hydrophobicity of each amino acid was assigned ac-
comparative modeling6] or maybe in some cases through cording to the scale of Cowan—Whittalgt or according to
the developing of ab initio models. These methodologies are the scale of Berggref8] depending on the desired applica-
quite complex. The question that then arises is: is it possible tion. These hydrophobicity scales are detailetihle 1 The
to carry out an estimation of the ASH based on simpler fea- fraction of superficial area dccupied by the amino acids
tures like the aminoacidic composition? It has been pointed defined by:
out that some features of the proteins can be predicted based

on their amino acid composition. For example, it has beenre-7, = Si 2)
ported that the prediction of the protein’s secondary structural Z S
contenf7], and the protein structural clafg can be carried jeA

out successfully from its amino acid composition only.
Keeping this in mind, the main objective of this paper is to
show if it is possible to predict the ASH of a protein based on
its amino acid composition and also in investigating possible
mathematical models that could be suitable for this purpose.

where,S is the sum of the accessible superficial area (ASA)
for all the amino acids of typé The value of ASA was
calculated using the software STRIDEL].

2.3. Linear model

The feasibility of modeling the ASH by means of the
data provided by the amino acid composition of the protein
sequence was studied. The model |, is the simplest model
considered in this work, and it is defined by the following

2. Materials and methods

2.1. Data selection

. . . L tion:
The protein three-dimensional data used in this study was equation
obtained from the PDB databaf®]. This study used the | 20 | ~
database available until March 2004, when, the number of ASH' = co + ) cidij + c21l 3

structures stored in PDB was nearly 25,000. In order to re- i=1
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Tablel o The RASA of an amino acilin a protein is defined as the
Hydrophobicity scales used in this work ratio between their ASA values() and their maximum ASA
aa Hydrophobicity scalés (Snax)- Then, the model Il is obtained when incorporating the
Cowan—Whittaker Berggren  following Eq. (5) into the model described by E(B):
Ala 0.660 0.169 All niSmaxiaj 5
Arg 0.176 0.000 a; = f ®)
Asn 0.306 0.257 Z 1 jomax j& j
Asp 0.433 0.099 jeA
g’ns 8'37;’33 8'21563 where g; is the exposition factor for the amino acid of class
Glu 0.467 0.099 Finally, the model IlI establishes a linear .relationship
Gly 0.557 0.109 among the ASAS for all the amino acid of clasisand the
His 0.000 0.035 maximum possible ASA defined forSmax;. In this caseg!
lle 1.000 0.264 would be given by:
Leu 0.998 0.264
Lys 0.061 0.000 I niSmaxiBi + ni
Met 0.846 0.169 a; = (6)
Phe 0.983 0.796 > " (nSmax B + 1))
Pro 0.768 0.169 jeA
Ser 0.401 0.169 o .
Thr 0.494 0.169 whereg;i andrn; are the coefficients of the linear model be-
Trp 0.914 1.000 tweenS§ andn;Snax; calculated for all the amino acids of
P" 8-22; g-g;g class presentin the complete database using the least squares
5: Rl _ : procedure. N
The scales are scaled in the interval [0 1]. By definition, the sum of coefficients is one, so these co-

where, ASHiis the ASH value for a protein given formodel I,  efficients conform a linear dependent system. Therefore, the
ci corresponds to the parameters of the linear model obtainedmodels analyzed in this work do not consider the data of the
by the least squares procedu}ds the ratio between the least hydrophobic amino acid, provided by histidine for the
length of the protein sequence and the maximum length ob-models associated to the scale of Cowan—-Whittaker, and argi-
served in the working database. The valliedrresponds to  nhine, in the case the models associated to the Berggren scale.
the fraction of the maximum accessible surface of the amino

acids of typd when they are totally exposed, defined by: 2.4. Using linear models to predict ASH

&! = _NiSmaxi 4) The possibility of using the linear models described pre-
Z 1jSmax j viously as predictors of the ASH for proteins with unknown
jeA three-dimensional structure was evaluated. For that purpose,

the working database was divided in two subsets: train and
test subsets in a ratio 2:1 (1321/661). The train subset was
used to adjust the parameters of the models using the least
square method. The test subset was used to evaluate the per-
formance of the models like prediction tools. The construc-
tion of the train and test subsets was repeated 100 times in
a random way. For each repetition, the effectiveness of the
models was evaluated; the average on all the repetitions was
finally reported.

where, nj is the number of amino acids of classn the
protein andSyax; is the maximum possible value of ASA,
obtained when arranging the amino acid of class a
extended conformation tripeptide G—X4®&2]. The values

of Snaxin A2 are 113 (ala), 241 (arg), 158 (asn), 151 (asp),
140 (cys), 189 (gin), 183 (glu), 85 (gly), 194 (his), 182 (ile),
180 (leu), 211 (lys), 204 (met), 218 (phe), 143 (pro), 122 (to
Be), 146 (thr), 259 (trp), 229 (tyr), 160 (val).

The previous model considers that each amino acid is in its
maximum exposition state. An extension to this model was
to incorporate a correction factor that takes into account the
general tendency of each amino acid to be exposed or not to
the solvent. The quantification of this trend can be performed
in multiple ways. However, the options analyzed in this study
were built starting from the analysis of the relative accessi-
ble superficial area (RASA). Then, the alternatives for the
exposition factor considered in this study were:

2.5. Design of a neural network predictor

A predictor tool based on a neural network model was
also considered as these models have shown to be robust
and effective tools to solve this type of problem in a com-
prehensive spectrum of applicatiod$8—-16] The design of
the neural network was carried out considering as inputs the

main variables of the models I-lll. Those are, the variables
(a) Average and median of the RASA of all the amino acids a!, al', a" (inputs type I-1ll) and, these variables defined a
of classi in the database. group of 20 inputs. The components associated to histidine,

(b) Probability that one amino acid of clashas a RASA in the case of Cowan—-Whittaker and arginine for Berggren,
superior to a certain threshold were not considered. Two preprocessing techniques were
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tested for the inputs and outputs of the network: scaling each one of these repetitions the network was initialized with
min/max, which makes a scaling of the entries so that they 20 sets of random different parameters to avoid reaching a
fall in the interval [-1; 1]; and normalization avg/std, which  local minimum in the error surface.
transforms the entries so that they will have zero mean and
unity standard deviation. 2.6. Performance measurement for the models

The architecture of the network considered an input layer
with 20 components, an output layer with one neuron and a  The performance of the models developed in this work
hidden layer with a variable number of neurons. The size of Was compared by mean of four fundamental parameters: The
the hidden layer was selected between 1 and 15 dependingnean square error MSE, the mean absolute error MAE, the
on the performance of the network. The activation function Standard deviation of the MAE, the maximum value of MAE
used in the network depended on the preprocessing of theand the Pearson’s correlation coefficient. The mean absolute
input data. When the data were preprocessed using the Scann@rror and the Pearson'’s correlation coefficient utilized in this
min/max or the normalization avg/std, the activation function Work were calculated by means of the following expressions:
was chosen to be the hyperbolic tangent function since it N
maps its entry to the intervaHl; 1]. On the other hand,  \aE — 1_002 Xk — Vil 7)

when no preprocessing was done, the activation function was —- Yk

N N N
N Y (ki) — D0 Xk Do Yk
=1 k=1 k=1

N N 2
VY (z yk)
k=1 k=1

Pearson=

(8)

N N 2
N (o) - <Z xk)
k=1 k=1

a sigmoid function which maps its entry to the intervall]
0]. wherexy represents the ASH of the protekn yk, the pre-

The training algorithm selected was a commercial im- diction of the ASH for the proteik; andN, the number of
plementation of the Levenberg—Marquardt algorithm. This proteins in consideration. The maximum MAE corresponds
algorithm is more memory intensive than the traditional al- to the biggest percentage discrepancy observed in the set in
gorithms, however, it presents very efficient and fast learning consideration.
features. The chosen parameters for the training algorithm
in all the experiments werei v =1.0, upec=0.8 and
uine = 1.5. The training style selected was Batch-training,
in this modality all the data are presented to the network 3 1. Analysis of the database
before making any change in the network parameters. In
general, this training style allows obtention of softer and  The average surface hydrophobicity defined in@ywas
most continuous learning profiles. calculated for all the proteins in the database using the hy-

As the main interest in this model is to use its prediction drophobicity scales of Cowan—Whittaker and Berggren as
capabilities, it was necessary to train the network so it guar- discussed by Berggren and Lienqu@g4]. Fig. 1 shows a
antees good generalization. To accomplish this objective, ahistogram of the ASH, as well as a scatter plot between ASH
widely used methodology, called early-stopping or stopped calculated by means of both scales. Both plots show that, in
training, was used. Basically, this method requires the divi- general, the value of the ASH for a protein calculated us-
sion of the data set into three subsets: train, validation anding the scale of Cowan—Whittaker is larger than the same
test. During the training, the update of the network param- calculated using Berggren. The average value observed in
eters is made based only on the data provided by the trainthe ASH of Cowan—Whittaker is almost 2.5 times the ob-
subset, while simultaneously, the performance of the network served in the case of Berggren. Also, the range for the ASH of
is monitored in the validation subset. The process of training Cowan—Whittaker is 1.7 times the range of Berggren, there-
stops when the error in the validation subsetincreases continfore, it is possible to state that the ASH calculated accord-
ually for a specified number or epochs. Finally, the prediction ing to the scale of Berggren is less sensitive to changes in
capabilities of the network are measured, in the test subsetthe composition of the protein surface, this being confirmed
In this study, the database was divided according to the ratioby the special features present in the scale of Berggren (the
2:1:1 (991/496/495) for the train, validation and test subsets, hydrophobic amino acids are well separated from the hy-
respectively. drophilic ones). It was determined that the correlation coeffi-

Inthis case, it was of interest to know the robustness of the cient among the ASH calculated using both scales is slightly
model to changes in the subsets of train, validation and test.greater than 0.6, indicating that both measures are not eas-
To test this, each network was trained with 20 groups of train, ily interchangeable. Therefore, it is necessary to study both
validation and test subsets built randomly. Additionally, for scales separately.

3. Results and discussion
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30 s 3.2. Linear models
5

25 - g * The linear models I-Il were built using all the data in the
= s database by means of the least squares methodology. Before
Z @0 3o g2t using model Il, it was necessary to calculate the exposition
5] 502 ‘- : factors associated to each class of amino acid. In total, 12
§ 15 Foo ' factors were calculated, obtained from the analysis of the
@ v " 0y pBorggren ] whole database. These coefficients are listed@iaible 2 In
% 10 - a few words, the values in this table correspond quite well
o with what one would expect based on the hydrophobic char-

5 ‘ | acteristic associated to each amino acid. This way, the most

| H H hydrophilic amino acids present high exposition facters
0 | ‘ l-..nﬁﬂ‘ (ﬂ‘ﬂm ; indicating their predisposition to be exposed to the solvent.
0.0 0.2 0.4 0.6 0.8 1.0

On the contrary, the hydrophobic amino acids possess the
<D yperficia™ [ lowest exposition factors.
Model Il required the determination of the parameters

Fig. 1. Histogram of average surface hydrophobicity (ASH) in the whole of the linear functions that associate the exposed area to the
database. ) ASH calculated using the scale of Cowan-Whittaker solventS and the maximum possible arﬂﬁnaxj- The pa-
(SASH>=0.4795 0.051, ASHhin=0.280, AShhay=0.779). W) ASH rameters of these functions together with the correlation co-
calculated using the scale of Berggren (<ASH>=0.48R036, .. . . .
ASHmin=0.080, AShhax=0.382). Inset: scatter plot between the AsH  €fficient associated to each one of these are listdalite 3
calculated by means of the scales of Cowan-Whittaker and Berggren IN the same way as in the model Il, the hydrophobic nature
(slope =0.863, intercept = 0.315, Pearson = 0.623). of each amino acid determined the general trend observed in

Table 3 The correlation coefficients of the hydrophilic or am-
phipathic amino acids, for instance: lys (0.967), glu (0.963),

_ The aminoacid_ic_ Compos_ition of the database was inves- asp (0.947), gln (0.931), asn (0.928) and arg (0.917), are very
tigated as shown ifig. 2and it was observed that the values  high On the other hand, the smallest correlation coefficients
obtained followed a reasonable distribution. Near 30% of the \yare found for the hydrophobic amino acids: phe (0.671), ile
database was conformed by leucine (8.8%), alanine (7.8%),(0.682). Consequently, the confidence intervals associated to

glycine (7.1%) and valine (6.9%) which correspond to some e slope of hydrophilic amino acids models were smaller
of the amino acids found with higher frequency in the pro- nan the hydrophobic ones.

teins and are usually considered more as amino acids with a  Tapje 4summarizes the results obtained by the three mod-
structural function than as components with some specialrolegs i, this study. In the discussion that follows, the reference
in the protein. On the other hand, the scarcest amino acidsy, giscussion is taken as the results obtained by model I.
were histidine (2.4%), methionine (2.1%), cysteine (1.9%) |; was determined that in the case of both hydrophobicity
and tryptophan (1.5%), which correspond to amino acids gcgjes, the best results reached by the model Il were obtained
commonly found in active sites or binding sites of proteins, \yhen selecting an exposition factor equal to the probability
and therefore, are less frequent. that one amino acid of clag$ias a RASA greater than 60%
(n=0.6 in Table 3. However, although this model incor-
porates a higher quantity of information, represented by the
exposition factor to the solvent, it was only able to decrease
_ the MSE in 4% as average in both scales. The increase of the
84 correlation coefficients was even less appreciable, only cor-
_ responding to an increment of 1% on average. With regard
m to model 111, in the case of the Cowan—Whittaker scale, this
M- was able to decrease the MSE in a little more than 18% and
M to increase the correlation coefficient in 6%. These results
4 are almost five times better that those obtained by model 1.

H In the case of Berggren, the performance of model Ill was
FQ

10

Relative frecuency [%]

almost the same as the one observed in model I. The results
obtained by model Ill are justified by the greater amount of
information regarding the way in which the amino acids are
o LI IS0 I distributed in the protein surface as a function of their abun-
LAGVEKSDITRPN YHMCW dance. Although the results obtained by model Il represent a
Amin aiid reasonable enhancement with regard to model |, this progress

is not necessarily justified with the amount of the additional
Fig. 2. Relative frequency of the amino acids in the working database.  information available for the model.
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Table 2

Exposition factorsy; for each class of amino acid obtained from the distribution of relative accessible superficial area (RASA) in the whole database: average

RASA, median RASA and the relative frequency to find a RASA larger than

J.C. Salgado et al. / J. Chromatogr. A 1075 (2005) 133-143

a threghold

aa <RASA> Median RASA Relative frequency of RASA>
n=0 n=0.1 n=0.2 n=0.3 n=0.4 n=0.5 n=0.6 n=0.7 nw=0.8 n=0.9

Ala 0.260 0.166 0.842 0.576 0.466 0.378 0.296 0.214 0.143 0.087 0.044 0.023
Arg 0.445 0.435 0.995 0.916 0.818 0.697 0.554 0.410 0.277 0.163 0.086 0.037
Asn 0.441 0.440 0.976 0.849 0.757 0.659 0.549 0.425 0.299 0.199 0.119 0.065
Asp 0.479 0.480 0.983 0.883 0.801 0.710 0.603 0.472 0.347 0.240 0.152 0.086
Cys 0.149 0.073 0.836 0.446 0.282 0.176 0.108 0.063 0.036 0.021 0.012 0.005
Gin 0.448 0.458 0.986 0.889 0.801 0.700 0.580 0.441 0.292 0.169 0.088 0.036
Glu 0.510 0.522 0.991 0.925 0.860 0.777 0.668 0.534 0.385 0.248 0.137 0.065
Gly 0.343 0.293 0.885 0.700 0.593 0.493 0.395 0.305 0.223 0.155 0.090 0.046
His 0.342 0.305 0.968 0.776 0.640 0.506 0.382 0.281 0.184 0.110 0.056 0.022
lle 0.161 0.064 0.847 0.431 0.297 0.210 0.148 0.093 0.051 0.027 0.014 0.006
Leu 0.186 0.091 0.871 0.484 0.344 0.248 0.174 0.117 0.071 0.040 0.020 0.008
Lys 0.505 0.510 0.997 0.961 0.902 0.805 0.675 0.515 0.349 0.205 0.099 0.035
Met 0.241 0.146 0.881 0.563 0.437 0.330 0.244 0.176 0.120 0.079 0.050 0.031
Phe 0.176 0.086 0.891 0.473 0.323 0.220 0.155 0.102 0.063 0.036 0.018 0.006
Pro 0.402 0.398 0.965 0.814 0.713 0.607 0.497 0.383 0.267 0.163 0.080 0.030
Ser 0.380 0.356 0.941 0.763 0.658 0.559 0.451 0.343 0.243 0.165 0.099 0.054
Thr 0.337 0.313 0.942 0.747 0.629 0.516 0.398 0.278 0.170 0.102 0.056 0.027
Trp 0.202 0.134 0.950 0.573 0.383 0.253 0.166 0.110 0.067 0.033 0.017 0.006
Tyr 0.246 0.185 0.956 0.656 0.473 0.329 0.226 0.153 0.095 0.054 0.027 0.011
Val 0.171 0.073 0.833 0.452 0.325 0.231 0.160 0.099 0.056 0.030 0.015 0.006

With regards to model coefficients it was observed that,

scale of Cowan—Whittaker. In the case of Berggren, the mod-

in general, the coefficients associated to the amino acids areels deleted a major quantity of variables, coinciding with the

positive, while the coefficients associated to the chain length
are negative. In the case of Cowan—Whittaker the models in-
cluded the contribution of almost the total of the available

variables, except in the case of model |, which deleted the

variable associated to lysine. This is reasonable, since lysine

has the second greatest hydrophobicity drop in value in the

Table 3

features characteristic of the scale, where hydrophobic amino
acids are relatively far from the hydrophilic amino acids.

3.3. About the predictive performance of the linear
models

In this section, the predictive capability of the linear mod-
els analyzed in the previous section is studied. Due to this,

Parameters, their confidence intervals (95%) and Pearson’s correlation coefthe performance of the model in the prediction of the ASH

ficients of the linear functionsS{ = Bin;Smax; + 1;) used to model the re-
lationship between the observed AS&)(and the maximum possible ASA
(ni Smax;) for each amino acid

in a standalone test subset that was not used to adjust the
parameters of each model was studied. The results obtained
in this section don’t differ substantially from those obtained

previously when the complete set of data was modeled as

aa Pearson n Bi

Ala 0.855 90.7+ 10.1 0.198+ 0.005
Arg 0.917 163.2+ 17.6 0.363+ 0.007
Asn 0.928 89.3+ 9.9 0.3644+ 0.007
Asp 0.947 113.4+ 11.2 0.403+ 0.006
Cys 0.725 7.0+ 3.4 0.132+ 0.006
GIn 0.931 73.4£ 10.6 0.388+ 0.007
Glu 0.963 100.8+ 14.1 0.461+ 0.006
Gly 0.890 101.2+ 7.1 0.243+ 0.006
His 0.840 43.1+ 8.4 0.284+ 0.008
lle 0.682 94.9+ 10.5 0.103+ 0.005
Leu 0.723 181.1 15.9 0.116+ 0.005
Lys 0.967 96.1+ 14.5 0.461+ 0.006
Met 0.686 59.9+ 7.2 0.155+ 0.007
Phe 0.671 93.@: 10.0 0.110+ 0.005
Pro 0.906 80.5+ 9.4 0.326+ 0.007
Ser 0.895 90.9t 10.6 0.308+ 0.007
Thr 0.892 93.2+ 10.2 0.265+ 0.006
Trp 0.749 30.8£ 5.8 0.1524+ 0.006
Tyr 0.799 98.7+ 10.3 0.171+ 0.006
Val 0.743 110.8+ 9.9 0.109+ 0.004

could be reasonably expected.

Tables 5 and @letail the results for the calculated ASH
based on the scales of Cowan—Whittaker and Berggren, re-
spectively. The content of these tables allows us to affirm
that remarkable changes did not take place in the com-
parative performance of the models I-lll;: in the case of
Cowan-Whittaker, the tendency maintained model Ill as the
best one, presenting a reduction of the MSE observed in
the test group of 18% with regard to model I; in the same
way, for the scale of Berggren, changes were not observed
with regard to the previous section, where big discrepan-
cies among the performance of each of the models were not
found.

In general, the results obtained in the test group had infe-
rior quality than those observed in the train subset, because
the test group was not used in the construction of the models.
The discrepancies among the value of obtained MSE between
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Table 4
Performance indicators for the least square adjustment of the average surface hydrophobicity (ASH) and linear models |-IIl for the whole éatabase: m
square error (MSE), mean absolute error (MAE), standard deviation of MAE (MAE std) and correlation coefficient (Pearson)

Performance index Cowan-Whittaker Berggren

Model | Model Il Model IlI Model | Model Il Model IlI
MSE x 10° () 1028 0981 0835 Q0464 0449 0466
MAE (%) 5.3 5.2 48 9.1 89 91
MAE std (%) 41 40 39 7.0 7.0 75
MAE max (%) 287 27.8 386 487 463 708
Pearson (-) a7e Q788 0823 0810 0816 0809

both subsets were less than 5% for the two scales in studyated with the scale of Cowan—Whittaker can be considered
in the case of model | discrepancies of around 3% were ob- slightly more robust.
served for both scales. For Cowan—Whittaker and Berggren  With regards to the parameters of the models: a great vari-
the minimum value of maximum MAE was obtained in model ability is not observed in the parameters found. In fact, great
I, reaching 22.4% in the case of Cowan—Whittaker and al- discrepancy is not observed between these parameters and the
most twice as much for Berggren (42.3%). obtained in the previous section. This confirms the robustness
All the models demonstrated an appreciable robustness,of the models found.
only small standard deviations among all the repetitions were  Additionally, we tested this models on the set of nine pro-
observed. In general, the maximum variability in the results teins used by Lienqueo et g¥]. The same equation pro-
was observed in the scale of Berggren, except per the meaposed by Lienqueo et al. was used in order to correlate the
sures of maximum MAE and the correlation coefficient. The predictions of the Cowan—Whittaker’'s ASH, carried out by
standard deviation in the MSE of the test group was less models I-lll, with the retention times in hydrophobic inter-
than 7% in the case of Cowan—Whittaker and 8% in the action chromatography of these proteins. The correlation co-
case of Berggren. The biggest variability was found in the efficients were: 0.85@& 0.01, 0.844t 0.01 and 0.954-0.01
value of maximum MAE that was less than 24% in both for models I, Il and lll, respectively. Lienqueo et al. gave a
cases. The variability of this measure associated with the correlation coefficient of 0.96. It is important to observe that
scale of Berggren was inferior to that observed in the case ofthe standard deviations on the repetitions are small, being
Cowan-Whittaker. All this indicates that the models associ- consistent with the previous observations.

Table 5
Average performance indicators and their standard deviation considering all repetitions for the linear models used as predictors of ASH irf the case o
Cowan-Whittaker scale: mean square error (MSE), mean absolute error (MAE), standard deviation of MAE (MAE std) and correlation coefficieht (Pearson

Cowan-Whittaker

Performance index

Model | Model Il Model I

Train Test Train Test Train Test
MSE x 103 =) 1.025+ 0.022 1.055+ 0.069 0.974+ 0.019 1.020+ 0.061 0.828+ 0.017 0.869+ 0.053
MAE (%) 53+ 0.1 5.4+ 0.2 52+ 0.1 5.3+ 0.2 4.84+ 0.0 494+ 0.1
MAE std (%) 4.1+ 0.0 4.1+ 0.1 4.0+ 0.1 4.0+ 0.2 3.9+ 0.1 4.0+ 0.2
MAE max (%) 26.6+ 2.8 23.6+ 4.2 26.2+ 2.7 22.44+ 3.9 37.0+ 3.1 30.9+ 7.0
Pearson (-) 0.77%# 0.007 0.76%+ 0.021 0.78% 0.006 0.77% 0.019 0.824+ 0.004 0.816+ 0.014
Table 6

Average performance indicators and their standard deviation considering all repetitions for the linear models used as predictors of ASH irBbygese o
scale: mean square error (MSE), mean absolute error (MAE), standard deviation of MAE (MAE std) and correlation coefficient (Pearson)

Performance index Berggren

Model | Model Il Model Ill

Train Test Train Test Train Test
MSE x 10° (-) 0.462+ 0.011 0.477+ 0.035 0.446+ 0.009 0.464+ 0.027 0.465+ 0.011 0.474+ 0.035
MAE (%) 9.0+ 0.1 9.2+ 0.3 8.9+ 0.1 9.0+ 0.3 9.1+ 0.1 9.2+ 0.3
MAE std (%) 7.0+ 0.1 7.1+ 0.3 6.9+ 0.1 7.0+ 0.3 75+ 0.1 7.6+ 0.5
MAE max (%) 472+ 2.1 43.2+ 5.0 452+ 15 423+ 4.4 69.9+ 3.9 58.2+ 13.7
Correlation coefficient (-) 0.81% 0.005 0.803+ 0.015 0.817+ 0.005 0.810+ 0.015 0.809+ 0.005 0.804+ 0.014
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Table 7 14
Optimum size of the hidden layer of the neural predictor of ASH found con-
sidering network inputs of types |-l and different preprocessing techniques i
Preprocessing Cowan-Whittaker Berggren
(input type) (input type) id
I I I I I I '
None 3 3 4 3 2 3 &Z - i
Min/max 2 2 3 2 3 3 k= -
Avg/std 2 2 2 2 2 2 #
% 0.6
=
3.4. About the predictive performance of the neural 04
network models '
In this section the results of using a neural network as a - ‘
predictor model of the ASH are shown. To determine the most

appropriate architecture of the network as well as the effect
of preprocessing the input data, all the permutation of inputs

(I-11), preprocessing techniques (min/max, avg/std, none), V\?h?;v:klr Berggren

and number of neurons in the hidden layer was evaluated. For
each pair composed by the input type and their preprocess-ig. 3. Mean square error (MSE) of the prediction using the neural predictor
ing, 15 neural networks were evaluated, varying the number of ASH on the test subsets for the network inputs type I-Ill. On the left side,

of neurons in the hidden |ayer Each valuation was repeatedthe scale of Cowan—-Whittaker; on the right side, the scale of Berggren. The
’ color of the bar representdj none input preprocessing;l) min/max input

20 times with train, validation and test subsets generated ran'preprocessingl) avg/std input preprocessing. The error bars represent the
domly. In turn, each one of these repetitions was trained 20 standard deviation of the MSE for all repetitions.
times with sets of different initial weights. Therefore, a total
of 54.000 different configurations were evaluated for each cessing in the inputs allowed the obtention of the best results
hydrophobicity scale. in all cases analyzed. The data are already in the interval [0;
The valuation of these configurations allowed the deter- 1] and although they do not necessarily cover completely this
mination of the optimum network architecture for each pair: range, this did not have a substantial effect in the results. In
input type/preprocessing type. The determination of the op- the measurements presented-ig. 3, the min/max scaling
timum number of neurons in the hidden layer was accom- technique showed slightly inferior results to those obtained
plished comparing the MSE average on the test subset ob-without preprocessing. On the other hand, the avg/std pre-
tained in all the repetitions. A summary of these results is processing gave the worst results, deviating more than 40%
shown inTable 7 In this table, it is observed that, in all in the case of the scale of Cowan—Whittaker and more than
cases, the optimum size of the network hidden layer was 16% in the case of Berggren. The variability of these results
found between two and four neurons, that corresponds to awas consistent with the previous observations of the biggest
small number of neurons in the hidden layer in relation to values in the case of the normalization avg/std (more than
the size of the input layer. The number of parameters to de-10%). Finally, it was observed that the addition of extra in-
termine in the training of each network is much larger than formation to the aminoacidic composition, as in the case of
the linear model. In each configuration, the number of in- the neural model based on the inputs type Il and IlI, did not
puts is constant and equal to 20 since the data provided byimprove notably the results. In the cases of Cowan—Whittaker
the histidine was removed in the case of Cowan—Whittaker and Berggren, the discrepancy between the models based on
and arginine, in the case of Berggren. Therefore, for a net- the inputs of type Il and Il with those of type | was less than
work with 20 inputs, two neurons in the hidden layer and 2%, therefore, the discussion will consider only the neural
one neuron in the output layer, the number of parametersmodel with input of type I.
to determine is 45 (2@ 2+2+2x 1+ 1), while when the The previous analysis allows us to conclude that the op-
size of the hidden layer is increased to four neurons, it is 89 timum network architecture for the prediction of the ASH
(20x 4+4+4x 1+1). The number of parametersin alinear starting from the aminoacidic composition, is composed of
model with 20 variables and one constant is 21. Then, the ar-only three neurons in the hidden layer, and that the prepro-
chitecture of an optimum network has, at least, a little more cessing of the input data by means of the techniques ana-
than double the parameters than the equivalent linear modellyzed is unnecessary. With this information the training of
It was found that the preprocessing technique does not af-the neural model was repeated but considering an outline
fectthe performance of the neural model. In general, itis well where had been increased the number of repetitions to 100
known that preprocessing the input data for a neural network and the number of initials conditions to 40. The results of
is determinant in its performance. However, in this applica- retraining the neural model with the conditions specified are
tion, in particular,Fig. 3 shows that the absence of prepro- showninTable 8 As with the linear models, the performance
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Table 8
Average performance indicators and their standard deviation considering all repetitions for the neural network predictor of ASH: mean s¢M&E)error
mean absolute error (MAE), standard deviation of MAE (MAE std) and correlation coefficient (Pearson)

Performance index Cowan-Whittaker Berggren

Train Validation Test Train Validation Test
MSE x 10° (-) 0.730+ 0.031 0.825+ 0.054 0.800+ 0.044 0.359+ 0.017 0.410+ 0.028 0.405+ 0.025
MAE (%) 45+ 0.1 4.7+ 0.2 4.7+ 0.1 8.1+ 0.2 8.6+ 0.3 8.5+ 0.2
MAE std (%) 3.5+ 0.1 3.8+ 0.2 3.7+ 0.2 6.3+ 0.2 6.7+ 0.4 6.7+ 0.3
MAE max (%) 232+ 2.8 25.1+ 6.4 257+ 54 4344+ 4.1 43.2+ 6.0 43.5+ 6.0
Correlation coefficient (=) 0.846 0.010 0.829+ 0.014 0.831+ 0.014 0.857+ 0.009 0.833t 0.015 0.836+ 0.014

of the neural model in the test subset was inferior to that ob- 50
served in the train subset. In the test subset and in the case
of Cowan—Whittaker, the neural model was able to decrease
the MSE obtained by the linear model | in 24.2%, in turn,
increasing the correlation coefficient by 8.1%. For Berggren,
the decrease of the MSE was inferior only corresponding to 30 1
15.1% associated to an increment of 4.1% in the correlation
coefficient. The neural model was also robust to changes in
the train, validation and test subsets. The variability in the re-
sults experienced a small decrease with regards to the linear
model, inferior to 15% in most of the cases.

The results presented so far show that the predictions of
the calculated ASH based on the scale of Cowan—Whittaker 0 e ; .
present a smaller MAE than the same ones based on the i Oi 04 0B 08 1.8
scale of Berggren. In facTable 8establishes that the MAE L/Lmax
average for. the ca§e of Berggren is "’T'mOSt twice that of Fig. 5. Mean absolute error (MAE) of the neural predictor of ASH on a
Cowan-WhittakerFig. 4 shows a plot with the accumula- test subset in function of the normalized length of the protein. The test
tive frequency of the MAE in a test group chosen randomly. subset was chosen randomly and the ASH was calculated using the scale of
By means of this plot we can confirm that the frequency of Cowan-Whittaker. Inset: distribution of the length in the whole database.
obtaining a prediction with high error is different for both
scales, being more frequent in the case of Berggren than invalues are dependent on the selected test subset, the general
the case of Cowan—Whittaker. For Cowan—Whittaker, the fre- behavior should not change too much due to the small vari-
guency of having a MAE greater than 10% is less than 8%, abilities observed in all the actual repetitions of experiments.
whereas in the case of Berggren, it is 22%. Although these  The relationship betweenthe predicted error and the length

of the protein studied is shown Figs. 5 and 6A clear re-
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Fig. 4. Cumulative frequency of the mean absolute error (MAE) of the neural Fig. 6. Mean absolute error (MAE) of the neural predictor of ASH on a test
predictor of ASH on a test subset chosen randomly. The color of the bar subsetin function of the normalized length of the protein. The test subset was
represents: ASH calculated usirDl)(the scale of Cowan—Whittaker and  chosen randomly and the ASH was calculated using the scale of Berggren.
(m) the scale of Berggren. Inset: distribution of the length in the whole database.
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0.7 plots inFigs. 7 and &how that the error extends regularly

o° in the whole range of ASH, except toward both ends of the
o o range. Those values have a higher associated error than those
o observed in the center of the range. The simplest explanation
0.6 - o oo is that the available data to build the models concentrates in
the center of the ranges (deig. 1), and therefore, the models
present a better performance under those conditions. This can
be useful to understand why most of the proteins analyzed in
this study present medium hydrophobicity values.

Finally, we used this neural network model (with input of
type I) to predict the Cowan—Whittaker's ASH on the set of
nine proteins used by Lienqueo et @]. These predictions
were used to estimate the retention time in hydrophobic in-
teraction chromatography of these proteins, in the same way
that in the case of the linear models, giving, in this case, a
correlation coefficient of 0.90F 0.02. Lienqueo et al. gave
03 . . . a correlation coefficient of 0.96.

0.3 0.4 0.5 0.6 0.7

<@g ace> Cowan_Whittaker [-]

0.5 Q 0% 5 0

Neural prediction [-]

4. Conclusions
Fig. 7. Scatter plot between the ASH calculated using the scale of
Cowan—Whittaker and the prediction of the neural network in a test sub-

The question this paper addresses is: Is it possible to pre-
set chosen randomly.

dict the average superficial hydrophobicity of a protein using
lationship is not observed between the MAE of the predic- only their amino acid composition? The results analyzed in
tion and the normalized protein length, unless the variancethis study showed that indeed it is possible, although, the
of this indicator diminishes as the protein length increases. quality of the prediction can be subject to some considera-
This is explained by the distribution of the protein length in tions.
the database: 90% of the proteins in the database presented The simpler model was the linear model | based only on
a length inferior to 30% of the maximum observed length the aminoacidic protein composition. This model has 21 pa-
(1014 amino acids) and therefore, the database is composediameters and was able to predict the ASH for a standalone
in its majority of proteins of medium size. test subset with a correlation coefficient of 0.769 for the case
A direct relation between the error in the prediction and of Cowan-Whittaker and 0.803 for the case of Berggren. In
the value of ASH of the protein was not observed. The scatter all the cases where it was evaluated, it gave a low variability
in its performance.

0.4 A model based on a neural network was also evaluated.
This model used the same inputs as the linear model I. It was
observed that for this problem, the optimum configuration for
a neural model with a single hidden layer considered three

0.3 1

Neural prediction [-]

0.1 1

0.0

0.2 1

0.0

0.1

0.2

<®Dg 11ace™ Berggren [-]

0.3

0.4

neurons in the hidden layer and with no preprocessing of
the inputs. This model has 67 parameters and improved the
results shown by the linear model in a little more than 24%

for the case of Cowan—Whittaker and 15% for Berggren. The

correlation coefficients obtained by this model were 0.831

and 0.836, respectively. The neural model was shown to be
slightly more robust that the linear one. In both cases, the
observed variabilities were not greater than 6.2% of the mean
square error.

Additionally, it was determined that the addition of data
about the aminoacidic exposition tendencies to the solvent
was not translated in a substantial enhancement in the re-
sults obtained by means of both predictors. Clear interrela-
tion was not observed between the quality of the prediction
and the protein length or the range of ASH of the protein
being studied. Distortions were only observed depending on

Fig. 8. Scatter plot between the ASH calculated using the scale of Berggrenth€ characteristics of the database distribution. Finally_, al-
and the prediction of the neural network in a test subset chosen randomly. though the neural model gave better results than the linear
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model in all cases reviewed, these improvements did not jus- References

tify, necessarily, the considerable increase in the parameters
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